Tofield, B. C. (1982). Intercalation Chemistry, edited by A. J. Jacobson \& M. S. Whittingham, pp. 181-227. New York: Academic Press.
Walker, J. R. \& Catlow, C. R. A. (1982). J. Phys. C, 15, 6151-6161.
Wang, J. C. (1980). J. Chem. Phys. 73, 5786-5795.

Whittingham, M. S. \& Huggins, R. A. (1971). J. Electrochem. Soc. 118, 1-6.
Wolf, D. (1979). J. Phys. Chem. Solids, 40, 757-773.
Yao, Y. F. \& Kummer, J. T. (1967). J. Inorg. Nucl. Chem. 29, 2453-2474.
Zendejas, M. A. \& Thomas, J. O. (1990). Phys. Scr. In the press.

# A Single-Crystal X-ray Diffraction Study of the Ion Exchange of $\mathbf{C d}^{\mathbf{2 +}}$ into $\mathbf{A g}^{+}$ $\beta$-Alumina 

By Kristina Edström and John O. Thomas<br>Institute of Chemistry, University of Uppsala, Box 531, S-751 21 Uppsala, Sweden<br>and Gregory C. Farrington<br>Department of Materials Science and Engineering K1, University of Pennsylvania, Philadelphia, PA 19104, USA

(Received 29 May 1990; accepted 7 March 1991)


#### Abstract

Conventional single-crystal X-ray diffraction (Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$ ) at 295 K has been used to study the ionic distribution of five compositions of the mixed-cation system $\mathrm{Ag}^{+} / \mathrm{Cd}^{2+}$ $\beta$-alumina, $\mathrm{Ag}_{1.22-y} \mathrm{Cd}_{y / 2} \mathrm{Al}_{11} \mathrm{O}_{17.11}, y=0.00,0 \cdot 10$, $0 \cdot 41,0 \cdot 99$ and $1 \cdot 11 . M_{r}=702 \cdot 1,697 \cdot 1,680 \cdot 7,651 \cdot 1$ and $644 \cdot 8, F(000)=674 \cdot 4,670 \cdot 0,655 \cdot 4,629 \cdot 0$ and $623 \cdot 4$. The compounds are made by the controlled ion exchange of $\mathrm{Cd}^{2+}$ ions into $\mathrm{Ag}^{+} \beta$-alumina from a $\mathrm{CdCl}_{2}$ melt at 873 K . The structure comprises a hexagonal framework of spinel-type blocks of aluminium oxide separating two-dimensional conduction planes with a spacing of $\sim 11 \AA$. All atoms in the spinel framework follow the centrosymmetric hexagonal space group $P 6_{3} / m m c, Z=2$, with cell dimensions $a=5 \cdot 5914$ (3), $5 \cdot 6032$ (2), $5 \cdot 5959$ (2), $5 \cdot 5896$ (5) and $5 \cdot 5900(7) \AA$ and $c=22 \cdot 430$ (4), $22 \cdot 504$ (3), $22 \cdot 458$ (1), $22 \cdot 434$ (8) and $22 \cdot 396$ (6) $\AA$ for $y=0.00,0 \cdot 10,0.41,0.99$ and $1 \cdot 11$, respectively. Final $w R\left(F_{o}^{2}\right)$ values are $0.0796,0.0693,0.0698,0.0874$ and 0.0853 , respectively. In $\mathrm{Ag}^{+} \beta$-alumina, the $\mathrm{Ag}^{+}$ ions occupy three different $6(h)$ sites: one near the 2(d) site, $\operatorname{Ag}(1)$; one close to the $2(b)$ site, $\operatorname{Ag}(3)$; and a third site, $\mathrm{Ag}(2)$, between these two sites, close to $\operatorname{Ag}(1)$. The occupations are 41,33 and $26 \%$ for $\mathrm{Ag}(1), \mathrm{Ag}(2)$ and $\mathrm{Ag}(3)$, respectively. The $\mathrm{Cd}^{2+}$ ions enter a new $6(h)$ site, not previously occupied by $\mathrm{Ag}^{+}$ions. At low replacement ( $\sim 8 \%$ ), the $\mathrm{Ag}(1)$-site occupation is unchanged. By the time $\sim 34 \%$ of the $\mathrm{Ag}^{+}$ions have been replaced, three $\mathrm{Ag}^{+}$sites are replaced with almost equal amounts by $\mathrm{Cd}^{2+}$ ions.


0108-7681/91/050643-08\$03.00

When 81 and $91 \%$ of the $\mathrm{Ag}^{+}$ions have been replaced, $\mathrm{Ag}(1)$ is the only site still containing $\mathrm{Ag}^{+}$ ions. The implications of these results are discussed with reference to the general aspects of ion exchange in $\beta$-alumina.

## Introduction

The $\mathrm{Na}^{+} \beta$-alumina structure offers a unique opportunity for studying the behaviour of mixed cations with different radii and valence because different monovalent cation types can be accommodated into the same structural host (Yao \& Kummer, 1967). The structure comprises loosely packed conduction layers which interleave rigid spinel blocks. More recently, $\mathrm{Na}^{+} \beta$-alumina has been exploited as a host for probing the structural and chemical properties of mixed-cation systems, typically, the nonadditive behaviour of ionic conductivity of mixedalkali systems which is a phenomenon commonly referred to as the mixed alkali effect, e.g. $\mathrm{Na}^{+}-\mathrm{K}^{+}$ and $\mathrm{Na}^{+}-\mathrm{Ag}^{+} \beta$-alumina (Bruce, Howie \& Ingram, 1986) and $\mathrm{Na}^{+}-\mathrm{Li}^{+} \quad \beta$-alumina (Tofield \& Farrington, 1979).

In contrast, divalent ions are found to be reluctant to exchange into $\beta$-alumina and the resulting compounds are poor ionic conductors (unlike the situation in the related compound $\beta^{\prime \prime}$-alumina, which accepts a diversity of divalent ions). It has been found that $\mathrm{Cd}^{2+}$ is the only divalent cation type which can exchange totally into $\beta$-alumina and that this process can serve as a valuable structural probe
© 1991 International Union of Crystallography
of the $\mathrm{Na}^{+}$-conductivity mechanism. Studies of the $\mathrm{Na}^{+}-\mathrm{Cd}^{2+} \beta$-alumina system (Sutter, Cratty, Saltzberg \& Farrington, 1983; Catti, Cazzanelli, Ivaldi \& Mariotto, 1987; Edström, Thomas \& Farrington, 1988, 1991) have thus shown that the local structure of the $\mathrm{Na}^{+}$ions is critical to the $\mathrm{Na}^{+}$-conduction mechanism. Since it is known that the distribution of $\mathrm{Ag}^{+}$ions in the conduction plane of $\beta$-alumina (Roth, 1972; Boilot, Colomban, Collongues, Collin \& Comès, 1980) is qualitatively different from that of $\mathrm{Na}^{+}$ions in $\mathrm{Na}^{+} \beta$-alumina (Roth, Reidinger \& LaPlaca, 1976; Reidinger, 1979; Edström et al., 1991) the suggestion arises that we can extend our understanding of conduction mechanisms in $\beta$-alumina by also following the effect of the systematic substitution of $\mathrm{Cd}^{2+}$ ions into the $\mathrm{Ag}^{+} \beta$-alumina system. The $\mathrm{Cd}^{2+}$ ions can be assumed to be trapped in the structure at temperatures below 700 K (Sutter et al., 1983) and the ionic mobility can be attributed solely to $\mathrm{Ag}^{+}$ ions. This assumption will be reflected in the structural arrangement of ions in the conduction plane. This method is also a useful approach for resolving structural overlap found in an X-ray diffraction investigation.

It should finally be pointed out that several mechanisms are possible for the compensation of the excess positive charge in the conduction plane of $\beta$-alumina: a trivalent aluminium ion in the spinel block can be exchanged for a divalent ion; alternatively, a Roth-Reidinger defect can exist involving an extra oxygen ion in the conduction plane structurally supported by interstitial aluminium ions in the spinel block (Roth et al. 1976; Reidinger, 1979). A combination of both mechanisms can also occur. In this study, only structures with Roth-Reidingerdefect compensation are considered.

Furthermore, it should be noted that $\mathrm{Ag}^{+}$and $\mathrm{Cd}^{2+}$ ions possess the same number of electrons and cannot, therefore, be distinguished explicitly in an X-ray diffraction experiment.

## Experimental

## Crystal preparation

$\mathrm{Ag}^{+} \beta$-alumina was prepared from $\mathrm{Na}^{+}$ $\beta$-alumina (obtained from Union Carbide Corporation) by ion exchange in $\mathrm{AgNO}_{3}$ at 575 K . The degree of exchange was monitored by using ${ }^{22} \mathrm{Na}$ as a radiotracer. These crystals were then annealed overnight at 775 K . This procedure was repeated several times. The fully exchanged $\mathrm{Ag}^{+} \beta$-alumina crystals were then suspended in a $\mathrm{CdCl}_{2}$ melt at 873 K for different periods of time. The degree of exchange was monitored by careful weight measurements (Table 1). The crystals were then annealed again at 923 K to

Table 1. Composition of the five different crystals studied in the system $\mathrm{Ag}_{1 \cdot 22}{ }_{y} \mathrm{Cd}_{y^{\prime} 2} \mathrm{Al}_{11} \mathrm{O}_{17 \cdot 11}$ as obtained from different analysis techniques

| $y$ | Formula derived from diffraction experiment ( $\mathrm{O}_{1711}$ assumed) | Weight measurement | Linear absorption measurement | Microprobe analysis |
| :---: | :---: | :---: | :---: | :---: |
| 0.00 | $\mathrm{Ag}_{122} \mathrm{Al}_{11} \mathrm{O}_{17}{ }_{11}$ |  | $0 \cdot 00$ (2) | $0 \cdot 0$ (1) |
| $0 \cdot 10$ | $\mathrm{Ag}_{1 / 2} \mathrm{Cd}_{0 \text { os }} \mathrm{Al}_{11} \mathrm{O}_{17,11}$ | $0 \cdot 1$ (1) | $0 \cdot 10$ (2) | $0 \cdot 1$ (1) |
| 0.41 | $\mathrm{Ag}_{0 \times 1} \mathrm{Cd}_{020} \mathrm{Al}_{11} \mathrm{O}_{17,11}$ | 0.4 (1) | 0.42 (2) | 0.4 (1) |
| 0.99 | $\mathrm{Ag}_{012} \mathrm{Cd}_{0,49} \mathrm{Al}_{1 \mid} \mathrm{O}_{1711}$ | 0.7 (1) | 0.74 (2) | $0 \cdot 7$ (1) |
| 1•11 | $\mathrm{Ag}_{012} \mathrm{Cd}_{6}{ }_{55} \mathbf{A l}_{11} \mathrm{O}_{1711}$ | 1.2 (1) | $1 \cdot 12$ (2) | 1.0 (1) |

allow the $\mathrm{Cd}^{2+}$ ions to distribute evenly. Five appropriate compositions were selected for the X-ray diffraction study. As extra checks on composition, the ratio of $\mathrm{Ag}^{+}$to $\mathrm{Cd}^{2+}$ ions in the crystals was also measured by microprobe analysis, an X-ray linear absorption measurement and chemical analysis (Table 1). The average compositions from the analyses were assumed in the refinements.

## Data collection

Experimental details are summarized in Table 2 and a few remarks may be added. The quality of each crystal used was checked with Laue films. Single-crystal intensities were measured at 295 K with a Stoe automatic four-circle diffractometer controlled by a MicroVAXII computer. Integrated intensities were measured using an $\omega / 2 \theta$ step scan (80 steps) and corrected for background (Lehmann \& Larsen, 1974); the correction was modified to allow for the $K \alpha$ doublet according to Blessing, Coppens \& Becker (1974). Five standard reflections were used in each case to scale intensities and standard deviations (McCandlish, Stout \& Andrews, 1975). Lp and absorption corrections were applied, the latter using an explicit description of crystal size and shape. Cell parameters were determined from a least-squares fit to observed $2 \theta$ angles prior to data collection. Systematic absences indicated the possible space groups $P 6_{3} / m m c$ and $P 6_{3} m c$.

## Refinements

$\mathrm{Ag}^{+} \beta$-alumina has been studied previously (Boilot, Colomban, Collin \& Comès, 1980) (see Fig. 1). Parameters from this study (within space group $P 6_{3} / m m c$ ) were used as starting parameters in the refinement of $\mathrm{Ag}^{+} \beta$-alumina (Figs. $2 a$ and $2 f$ ). Different models describing the $\mathrm{Ag}^{+}$ion near BR (Beevers-Ross site) $[\mathrm{Ag}(1)$ at BRDl site] were tested and a split-atom model was found to be the most appropriate. The same test was carried out for $\mathrm{Ag}(3)$ at the aBR (anti-Beevers-Ross) site and here also a split-atom model was better. Thermal vibrations and/or displacements were described with anisotropic $\beta_{i j}$ tensors for all $\mathrm{Ag}^{+}$ions. The RothReidinger defect was included with the extra $O(6)$

Table 2. Some experimental parameters relating to the data collections and refinements for $\mathrm{Ag}_{1 \cdot 22-1} \mathrm{Cd}_{y / 2}$ $\mathrm{Al}_{11} \mathrm{O}_{17.11}, y=0.00,0 \cdot 10,0.41,0.99$ and $1 \cdot 11$

|  | $y=0.00$ | $y=0 \cdot 10$ | $y=0.41$ | $y=0.99$ | $y=1 \cdot 11$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $F(000)$ | 674.4 | 669.8 | 655.6 | 629.0 | 623.4 |
| Cell parameters ( $\AA$ ) |  |  |  |  |  |
| a | 5.5914 (3) | 5.6032 (2) | $5 \cdot 5959$ (1) | 5.5896 (1) | $5 \cdot 5900$ (7) |
| ${ }^{\prime}$ | 22.430 (4) | 22.504 (3) | 22.458 (1) | 22.434 (8) | 22.396 (6) |
| Cell volume ( $\mathrm{A}^{3}$ ) | 607.29 | 611.88 | 609.03 | 607.01 | $606 \cdot 07$ |
| No. of reflections for cell determination | 25 | 24 | 24 | 24 | 24 |
| $2 \theta$ range () | 1430 | 14-30 | 14-30 | 25-30 | 25.30 |
| D, ( $\mathrm{Mg} \mathrm{m}^{\prime}$ ) | 3.84 | 3.78 | 3.71 | 3.56 | 3.53 |
| Max.imin. crystal dimensions (mm) | 0.18/0.13 | 0.21/0.13 | 0.18/0.14 | 0.17/0.11 | $0.18 / 0.13$ |
| $\mu_{\text {., }}\left(\mathrm{mm}{ }^{\text {' }}\right.$ ) | 2.93 | 2.75 | 2.54 | $2 \cdot 24$ | $2 \cdot 15$ |
| $\mu .\left(\mathrm{mm}{ }^{\prime}\right)$ | 2.88 | 2.74 | 2.60 | 2.30 | 2.08 |
| Transmission factors | 0.61-0.70 | $0.66-0.73$ | $0.71-0.77$ | 0.730 .80 | 0.64-0.87 |
| $(\sin \theta / \lambda)_{\text {max }}\left(\begin{array}{l} \\ \\ \end{array}\right)$ | 1.07 | 1.08 | 1.08 | 1.08 | 1.08 |
| $h k /$ range $h$ | -100 | 010 | 010 | 0-10 | $-100$ |
| $k$ | -10-0 | 0-10 | 0-10 | 0-10 | 0-10 |
| 1 | 0-47 | -480 | -48-0 | 0-48 | 0-48 |
| $K$ factor in empirical weighting scheme | 0.02 | 0.02 | 0.02 | 0.04 | 0.04 |
| Max. ${ }^{\text {min. peak }}$ in final difference map (e $\AA{ }^{3}$ ) | 2.11/-1.39 | 2-21--2.01 | 1.67i-1.15 | $0.91 / \cdots 0.76$ | 0.82i-1.51 |
| No. of standard reflections | 5 | 5 | 5 | 5 | 5 |
| No. of observed reflections | 2254 | 2454 | 2448 | 2061 | 4665 |
| $R_{\mathrm{mm}}^{\Sigma}-\Sigma I_{a} \cdot \bar{I}_{a}$ | 0.036 | 0.034 | 0.034 | 0.047 | 0.049 |
| No. of unique reflections | 1245 | 1293 | 1289 | 1184 | 1387 |
| No. of parameters refined | 53 | 55 | 56 | 52 | 59 |
| No. of reflections used in refinement $\left[F_{i}^{2}>2 \sigma\left(F^{2}\right)\right.$ | 1634 | 1859 | 1828 | 1598 | 3301 |
| $R\left(F_{\text {F, }}\right)$ | 0.0368 | 0.0321 | 0.0349 | 0.0410 | 0.0381 |
| $R\left(F_{m}^{2}\right)$ | 0.0567 | 0.0371 | 0.0459 | 0.0821 | 0.0765 |
| $w \boldsymbol{R}\left(F_{o}^{\text {s }}\right.$ ) | 0.0796 | 0.0693 | 0.0698 | 0.0874 | 0.0853 |
| $S$ | 1.7837 | 1.7747 | 1.7018 | 1.6391 | 1.3850 |
| Max. $\Delta / \sigma$ | 0.1 | $0 \cdot 1$ | $0 \cdot 1$ | 0.1 | $0 \cdot 1$ |

atom fixed at a mid-oxygen (mO) site [midway between column-oxygens $\mathrm{O}(5)$ ] in the conduction pathway and given an isotropic temperature factor. The interstitial $\mathrm{Al}(5)$ atoms were found above and below the conduction plane (at $z \sim 0.175$ and $z \sim$ 0.325 ) and their positional parameters were refined. The $\mathrm{Al}(5)$ occupation was initially refined; the value obtained corresponded to that of the fixed $\mathrm{O}(6)$, i.e. $0 \cdot 11$ per cell layer. The thermal vibrational description for $\mathrm{Al}(5)$ was constrained to be the same as that for $\mathrm{Al}(1)$ and the occupation of $\mathrm{Al}(1)$ was reduced by an amount corresponding to the occupation of $\mathrm{Al}(5)$. Remarkably, the total $\mathrm{Ag}^{+}$-ion content in the conduction plane refined without constraints to the expected value of $1 \cdot 22$. A cation charge of 1.22 was then assumed in the refinement of the mixed crystals.

In three mixed-ion structures, the $\mathrm{Cd}^{2+}$-ion occupation was constrained to values obtained from the analyses and the $\mathrm{Ag}^{+}$content constrained to give a total cation charge in the conduction plane of 1-22. In the case of one composition, $y=0.99$, the different models tested in the refinements gave a result
with more $\mathrm{Cd}^{2+}$ ions in the structure than obtained from analysis.
An initial crude picture of the conduction plane in the $y=0.10$ case was obtained from a difference Fourier synthesis after the parameters for pure $\mathrm{Ag}^{+}$ $\beta$-alumina were used to obtain the $F_{c}$ 's. The best fit was obtained by assigning the electron density in the difference maps to $\mathrm{Cd}^{2+}$ at a new $6(h)$ site ( $B$ site) (Figs. $2 b$ and $2 g$ and Table 3).* The occupation of the BRDl site could be kept to the same value as in $\mathrm{Ag}^{+} \beta$-alumina. The $\mathrm{Ag}^{+}$occupations of the other two sites were coupled in the refinement. Anisotropic $\beta_{i j}$ 's were used for the description of the thermal vibration/displacement.

A crude picture for the $y=0.41$ structure was obtained as for $y=0 \cdot 10$. The same $\mathrm{Cd}^{2+}$ site was found and refined (Figs. $2 c$ and $2 h$ and Table 3). The $\mathrm{Ag}^{+}$-ion occupations of BRD1 and BRD2 $[\mathrm{Ag}(1)$ and $\operatorname{Ag}(2)]$ were coupled and the occupation of the $\mathrm{Ag}(3)$ site near aBR was fixed empirically to a value consistent with a clean Fourier difference map.

For the $y=0.99$ crystal, $\mathrm{Cd}^{2+}$ ions were again found in the $B$ site, the site near aBR was almost empty and the remaining $\mathrm{Ag}^{+}$was found in the BRDl site (Figs. $2 d$ and $2 i$ ). Anisotropic $\beta_{i j}$ 's were again used for $\mathrm{Ag}^{+}$and $\mathrm{Cd}^{2+}$ ions. The $\mathrm{Ag}^{+}$-ion occupation of the BRDI site was coupled to the $\mathrm{Cd}^{2+}$ occupation of the $B$ site. Some difficulties were experienced in these refinements as the total $\mathrm{Cd}^{2+}$ content could not be made consistent with the analysis results. We were forced to conclude that this was indeed a real effect and that the small single crystal for the data collection did not have the same composition as the larger crystal from which it was removed (see Table 1).

The $y=1 \cdot 11$ crystal contained fewer $\mathrm{Cd}^{2+}$ ions than expected on the basis of weight measurements but the refined result was consistent with results from the other analyses. The measured $c$ axis ( $22.40 \AA$ ) (Table 2) compared to that of $\mathrm{Cd}^{2+} \beta$-alumina (22.37 $\AA$ ) (Edström et al., 1991) supports the determination of the $y=1 \cdot 11$ composition. Also, the BR site is not empty, unlike the situation for $\mathrm{Cd}^{2+}$


Fig. I. A schematic representation of the different sites occupied by $\mathrm{Ag}^{+}$and $\mathrm{Cd}^{2+}$ ions in the conduction plane.


Fig. 2. $F_{6}$ syntheses for $\mathrm{Ag}_{122}{ }_{,} \mathrm{Cd}_{y_{2}, ~} \mathrm{Al}_{1}, \mathrm{O}_{1711}$ with $y=0.00,0 \cdot 10,0 \cdot 41,0 \cdot 99$ and $1 \cdot 11(a)-(e)$ The conduction plane at $z=\frac{1}{4},(f)-(j)$ the $(x,-x, z)$ plane perpendicular to the conduction plane. Contour intervals are $2 \cdot 2 \mathrm{e} \AA \stackrel{3}{ } ;$; zero contours omitted.

Table 3. Atomic positional parameters ( $\times 10^{5}$ ) in $\mathrm{Ag}_{1.22-y} \mathrm{Cd}_{y / 2} \mathrm{Al}_{11} \mathrm{O}_{17.11}$
Equivalent isotropic displacement parameters for the spinel block [expressed as mean-square amplitudes, $U_{\mathrm{eq}}=\frac{1}{3}\left(U_{11}+U_{22}+U_{33}\right) \times 10^{3}$ ] and anisotropic displacement parameters ( $\beta_{i \prime} \times 10^{4}$ ) for $\mathrm{Ag}^{*}$ and $\mathrm{Cd}^{2}{ }^{*}$ ions and the $\mathrm{O}(5)$ atom. For each atom, the five rows refer to compositions $v=0.00,0 \cdot 10,0.41,0.99$ and $1 \cdot 11$, respectively.

|  | Site | Fractional occupation | $x$ | $y$ | $z$ | $\begin{aligned} & \beta_{11} \text { or } \\ & U_{\mathrm{cy}}\left(\AA^{2}\right) \end{aligned}$ | $\beta_{22}$ | $\beta_{33}$ | $\beta_{12}$ | $\beta_{13}$ | $\beta_{23}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Ag}(1)$ | $6(h)$ | 0.168 (7) | 70476 (21) | - $x$ | ! | 547 (5) | $\beta_{11}$ | $8 \cdot 9$ (1) | 286 (8) | 0 | 0 |
|  |  | 0168 (7) | 70508 (3) |  |  | 534 (2) |  | 8.5 (1) | 279 (1) |  |  |
|  |  | 0.134 (7) | 70254 (44) |  |  | 527 (8) |  | 8.4 (1) | 317 (9) |  |  |
|  |  | 0.077 (1) | 70540 (80) |  |  | 807 (2x) |  | 6.8 (2) | .-147(43) |  |  |
|  |  | 0.037 (1) | 68118 (168) |  |  | 527 (11) |  | 5.5 (2) | 71 (4) |  |  |
| Ag(2) | $6(h)$ | 0.105 (8) | 77801 (145) | - x | $!$ | 577 (22) | $\beta_{11}$ | 6.0 (2) | - 353 (19) | 0 | 0 |
|  |  | 0.087 (2) | 77801 |  |  | 519 (14) |  | 6.0 (4) | -323(1) |  |  |
|  |  | 0.056 (7) | 75751 (165) |  |  | 297 (16) |  | $5 \cdot 4$ (2) | -73 (11) |  |  |
|  |  |  |  | - | - | - | . | - | - | - | - |
|  |  | . | - | - | - | - |  | - | - |  | - |
| $\mathrm{Ag}(3)$ | $6(h)$ | 0134 (1) | 97628 (47) | - $x$ | 4 | 655 (8) | $\beta_{1}$ | 3.8 (1) | -7.9 (15) | 0 | 0 |
|  |  | $0 \cdot 119$ (1) | 97710 (21) |  |  | 628 (3) |  | $3 \cdot 5$ (1) | 80.0 (5) |  |  |
|  |  | 0.079 | 97604 |  |  | 661 (5) |  | $3 \cdot 0$ (1) | 84.9 (14) |  |  |
|  |  |  | - | - |  |  |  |  | - |  | - |
|  |  | - | - | - | - | - | - | - | . | - | .. |
| $\mathrm{Cd}(B)$ | $6(h)$ | - | - | - | - | -- | -- |  | - |  | - |
|  |  | 0.016 | 84569 | - $x$ | ! | 707 (23) | $\beta_{11}$ | 9.0 (5) | - 576 (1) | 0 | 0 |
|  |  | 0.069 | 84569 (31) |  |  | 370 (5) |  | 13.6 (3) | - 63 (8) |  |  |
|  |  | 0.165 (2) | 85596 (41) |  |  | 429 (4) |  | 17.5 (2) | -78(5) |  |  |
|  |  | 0.154 (5) | 84827 (34) |  |  | 473 (4) |  | 14.5 (2) | - 101 (4) |  |  |
| $\mathrm{Cd}(\mathrm{D})$ | $12(k)$ | - | - | - |  |  | - | - |  | - |  |
|  |  | - |  |  | - | - | - | - |  | .- |  |
|  |  | - | $\cdots$ | - |  |  | - | - | - | - | - |
|  |  | - | - | - | - | - | - |  | - |  | - |
|  |  | 0.003 (1) | 82949 (38) | - $x$ | 0.2598 (1) | 151 (9) | $\beta_{11}$ | 3.2 (4) | 52 (8) | 103 (6) | $\cdots 10.3$ (6) |
| O (2) | 12(k) |  | 50288 (6) | -x | 14646 (3) | 7.8 |  |  |  |  |  |
|  |  |  | 50287 (5) |  | 14652 (2) | 6.9 |  |  |  |  |  |
|  |  |  | 50269 (6) |  | 14662 (2) | 7.2 |  |  |  |  |  |
|  |  |  | 50276 (6) |  | 14701 (3) | 7.5 |  |  |  |  |  |
|  |  |  | 50265 (4) |  | 14698 (2) | 7.1 |  |  |  |  |  |
| O(3) | $4(f)$ |  | $\frac{3}{3}$ | ! | 5536 (5) | 6.5 |  |  |  |  |  |
|  |  |  |  |  | 5543 (4) | 5.5 |  |  |  |  |  |
|  |  |  |  |  | 5539 (4) | 5.7 |  |  |  |  |  |
|  |  |  |  |  | 5587 (4) | 5.7 |  |  |  |  |  |
|  |  |  |  |  | 5584 (3) | $5 \cdot 3$ |  |  |  |  |  |
| O(4) | 4(e) |  | 0 | 0 | 14299 (5) | 4.7 |  |  |  |  |  |
|  |  |  |  |  | 14301 (4) | 4.8 |  |  |  |  |  |
|  |  |  |  |  | 14306 (4) | 5.2 |  |  |  |  |  |
|  |  |  |  |  | 14352 (4) | $5 \cdot 2$ |  |  |  |  |  |
|  |  |  |  |  | 14366 (3) | 4.9 |  |  |  |  |  |
| Al(5) | 12(k) | 0.037 | -15959 (72) | $2 x$ | 17572.(33) | 6.3 |  |  |  |  |  |
|  |  |  | - 15975 (62) |  | 17627 (32) | 5.4 |  |  |  |  |  |
|  |  |  | - 15880 (66) |  | 17627 (25) | 5.4 |  |  |  |  |  |
|  |  |  | - 15930 (68) |  | 17657 (32) | 5.8 |  |  |  |  |  |
|  |  |  | 15968 (44) |  | 17620 (22) | 5.5 |  |  |  |  |  |
| O(6) | $6(h)$ | 0.037 | \% | $!$ | 1 | 3.0 |  |  |  |  |  |
|  |  | 0.037 |  |  |  | 3.0 |  |  |  |  |  |
|  |  | 0.037 |  |  |  | 3.0 |  |  |  |  |  |
|  |  | 0.037 |  |  |  | 3.0 |  |  |  |  |  |
|  |  | 0.037 |  |  |  | 3.0 |  |  |  |  |  |
| O(5) | 2(c) |  | i | ? | $!$ | 905 (23) | $\beta_{11}$ | 1.1 (3) | $\beta_{11} \cdot 2$ | 0 | 0 |
|  | $6(h)$ |  | 30292 (23) | $\cdots$ | 4 | 503 (33) |  | 0.9 (2) | 159 (22) | 0 | 0 |
|  | $6(\mathrm{~g})$ |  | 29786 (5) |  |  | 529 (29) |  | 1.5 (2) | 217 (20) | 0 | 0 |
|  | $6(h)$ |  | 27847 (43) |  |  | 456 (8) |  | 1.5 (4) | 336 (21) | 0 | 0 |
|  | ${ }^{6(h)}$ |  | 27725 (28) |  |  | 511 (4) |  | 0.6 (2) | 423 (19) | 0 | 0 |

$\beta$-alumina (Figs. $2 e$ and $2 j$ ). Again, $\mathrm{Cd}^{2+}$ ions were found at $B$ sites and $\mathrm{Ag}^{+}$ions at BRD1 sites. A second $\mathrm{Cd}^{2+}$ site was refined at a $D$ site, close to the $B$ site but shifted out from the conduction plane in the $z$ direction. The same type of site was also seen in fully exchanged $\mathrm{Cd}^{2+} \beta$-alumina. The implications of this site are not clear.

The function minimized in all refinements was $\sum w\left(\left|F_{o}\right|^{2}-\mid F_{c}{ }^{\prime 2}\right)^{2}$ where $w^{-1}=\sigma^{2}\left(F_{o}^{2}\right)=\sigma_{c}^{2}\left(F_{o}^{2}\right)+$ $\left(k F_{o}^{2}\right)^{2}$. For values of $k$ see Table 2. Reflections with $F_{o}^{2}$ less than $2 \sigma\left(F_{o}^{2}\right)$ were removed from the refinements. An isotropic extinction correction was applied in all refinements. The coherent scattering amplitudes and anomalous-dispersion terms used for

Table 4. Some interatomic distances ( $\AA$ ) for $\mathrm{Ag}_{1 \cdot 22-,} \mathrm{Cd}_{y / 2} \mathrm{Al}_{11} \mathrm{O}_{17 \cdot 11}, y=0 \cdot 00,0 \cdot 10,0 \cdot 41,0 \cdot 99$ and
$1 \cdot 11 ; \mathrm{P6}_{3} / \mathrm{mmc}$ notation

|  | $y=0.00$ | $y=0 \cdot 10$ | $y=0.41$ | $y=0.99$ | $y=1 \cdot 11$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Ag}(1)-\mathrm{O}(6)(\times 1)$ | 1.827 (1) | 1.832 (1) | 1.814 (2) | 1.830 (4) | 1.688 (8) |
| $\mathrm{Ag}(1)-\mathrm{O}(2)(\times 4)$ | 2.731 (1) | 2.738 (1) | 2.736 (1) | 2.721 (2) | 2.765 (5) |
| $\mathrm{Ag}(1)-\mathrm{O}(5)(\times 2)$ | 3.060 (1) | 2.902 (1) | 2.885 (3) | 2.777 (4) | 2.907 (8) |
| $\mathrm{Ag}(2) \cdots \mathrm{O}(6)(\times 1)$ | 2.347 (7) | $2 \cdot 352$ (1) | 2.192 (8) |  |  |
| $\mathrm{Ag}(2)-\mathrm{O}(2)(\times 4)$ | 2.713 (4) | 2.720 (1) | $2 \cdot 700$ (4) |  |  |
| $\mathrm{Ag}(2)-\mathrm{O}(5)(\times 2)$ | 2.847 (7) | 2.636 (1) | 2.660 (8) |  |  |
| $\mathrm{Ag}(2)-\mathrm{O}(6)(\times 1)$ | 3.271 (7) | 3.277 (1) | 3.454 (8) |  |  |
| $\mathrm{Ag}(3)-\mathrm{O}(6)(\times 1)$ | 1.740 (2) | 1.739 (1) | 1.743 (1) |  |  |
| $\mathrm{Ag}(3)-\mathrm{O}(4)(\times 2)$ | 2.411 (1) | 2.418 (1) | 2.413 (1) |  |  |
| $\mathrm{Ag}(3)-\mathrm{O}(5)(\times 2)$ | $3 \cdot 120$ (2) | 2.835 (2) | 2.778 (2) |  |  |
| $\mathrm{Cd}(B)-\mathrm{O}(5)(\times 2)$ |  | 2.546 (1) | 2.501 (3) | 2.335 (3) | 2.328 (2) |
| $\mathrm{Cd}(B)-\mathrm{O}(6)(\times 1)$ |  | 2.698 (1) | 2.695 (1) | 2.607 (2) | 2.671 (2) |
| $\mathrm{Cd}(R)-\mathrm{O}(4)(\times 2)$ |  | 2.835 (1) | 2.829 (1) | 2.766 (1) | 2.798 (1) |
| $\mathrm{Cd}(B)-\mathrm{O}(2)(\times 4)$ |  | 2.865 (1) | 2.858 (1) | 2.882 (1) | 2.854 (1) |
| $\mathrm{Al}(1)-\mathrm{O}(4)(\times 1)$ | 1.821 (1) | 1.825 (1) | 1.822 (1) | 1.821 (1) | 1.820 (1) |
| Al(1)-O(2) ( $\times 2$ ) | 1.828 (1) | 1.833 (1) | 1.831 (1) | 1.830 (1) | 1828 (1) |
| Al( 1 )- O(3) ( $\times 1$ ) | 1.970 (1) | 1.974 (1) | 1.971 (1) | 1.969 (1) | 1.970 (1) |
| $\mathrm{Al}(1)-\mathrm{O}(1)(\times 2)$ | 2.020 (1) | 2.026 (1) | 2024 (1) | 2.024 (1) | 2.024 (1) |
| $\mathrm{Al}(2)-\mathrm{O}(1)(\times 3)$ | 1.799 (1) | 1.802 (1) | 1.801 (1) | 1.800 (1) | 1.799 (1) |
| $\mathrm{Al}(2) \cdots \mathrm{O}(3) \quad(\times 1)$ | 1.801 (1) | 1.808 (1) | 1.807 (1) | 1.810 (1) | 1.807 (1) |
| Al( 3 ) $-\mathrm{O}(5)(\times 1)$ | 1.666 (1) |  |  |  |  |
| $\mathrm{Al}(3) \cdots \mathrm{O}(5)(\times 3)$ |  | 1.697 (1) | 1.702 (1) | 1.744 (1) | 1.743 (1) |
| $\mathrm{Al}(3)-\mathrm{O}(2)(\times 3)$ | 1.768 (1) | 1.772 (1) | 1.767 (1) | 1.764 (1) | 1.764 (1) |
| $\mathrm{Al}(4)-\mathrm{O}(1) \quad(\times 6)$ | 1.892 (1) | 1.897 (1) | 1.894 (1) | 1.894 (1) | 1.894 (1) |
| Al(5)- O(6) $(\times 1)$ | 1.668 (7) | 1.661 (6) | 1.658 (6) | 1.649 (7) | 1.654 (5) |
| $\mathrm{Al}(5)-\mathrm{O}(4) \quad(\times 1)$ | 1.711 (4) | 1.722 (3) | 1.710 (3) | 1.711 (4) | 1.709 (3) |
| $\mathrm{Al}(5)-\mathrm{O}(2)(\times 2)$ | 1.763 (4) | 1.771 (3) | 1.77 .3 (2) | 1.767 (3) | 1.763 (2) |

$\mathrm{Al}^{3+}, \mathrm{O}^{2-}, \mathrm{Ag}^{+}$and $\mathrm{Cd}^{2+}$ were taken from International Tables for $X$-ray Crystallography (1974, Vol. IV). All computer programs used are described by Lundgren (1982).

Positional parameters and occupations are found in Table 2 and some important distances in Table 4.*

## Results and discussion

Two earlier independent room-temperature singlecrystal X-ray diffraction studies of non-stoichiometric $(x \approx 0.3) \quad \mathrm{Ag}^{+} \beta$-alumina have suggested approximately equal occupation of three $\mathrm{Ag}^{4}$ sites (Roth, 1972; Boilot, Colomban, Collongues et al., 1980). Our present study corroborates these results (Figs. $2 a, 2 f$ and $3 a$ ); 41,33 and $26 \%$ of the $1 \cdot 22$ $\mathrm{Ag}^{+}$ions per cell layer are localized near BRDl, aBR and BRD 2 sites $[\mathrm{Ag}(1), \mathrm{Ag}(3), \mathrm{Ag}(2)$, respectively]. A more detailed description of the local ordering of $\mathrm{Ag}^{+}$ions is, of course, desirable but such information is not directly available from our cellaveraged diffraction picture. Our result can serve, however, as a structural basis for the main aspect of this present study; namely, to exploit the stepwise exchange of $\mathrm{Cd}^{2+}$ ions into the $\mathrm{Ag}^{+}$arrangement as a source of additional information about the $\mathrm{Ag}^{+}$conduction mechanism in the $\beta$-alumina host.

[^0]
## General structural features

The $c$ axis is initially observed to increase $(y=$ $0 \cdot 10$ ) and only then to reverse for higher $\mathrm{Cd}^{2+}$ content (see Table 2). Such complex behaviour of the $c$ axis is also reflected in the observed atomic arrangements within the conduction plane for different $y$ values. Typically, the $\mathrm{O}(5)$ atom becomes more disordered (with the introduction of $\mathrm{Cd}^{2+}$ ions) from its 2(c) site ( $\mathrm{Pb}_{3} / m m c$ notation) in $\mathrm{Ag}^{+} \beta$-alumina to $6(h)$ sites in all the $\mathrm{Ag}^{+} / \mathrm{Cd}^{2+} \beta$-alumina compositions studied. Any diffraction study of a nonstoichiometric compound such as $\mathrm{Ag}^{+} \beta$-alumina suffers from severe overlap problems, implying that bond distances and effective atomic positions are intimately related to the model used to describe the observed electron density. A more detailed analysis of the effect of ion exchange of ions within the conduction plane must therefore take account of such factors rather than speculate upon $c$-axis variations. This must be borne in mind when discussing general structural trends in these materials [see our earlier discussion in Edström et al. (1991)].

In the $y=0.10$ case ( $\sim 8 \%$ of $\mathrm{Ag}^{\dagger}$ replaced by $\mathrm{Cd}^{2+}$ ), only the $\mathrm{Ag}^{+}$ions in the BRD 2 and aBR sites are replaced (Table 2 and Figs. $2 b$ and $2 g$ ). As more $\mathrm{Ag}^{+}$ions are replaced ( $y=0.41$ ), the occupations of all three $\mathrm{Ag}^{{ }^{1}}$ sites diminish at roughly equal rates, so that by the time a large percentage of the $\mathrm{Ag}^{+}$ions have been replaced (the $y=0.99$ and 1.11 cases) only BRD1 sites are occupied by $\mathrm{Ag}^{+}$ions (Figs. $2 d, 2 e, 2 i$ and $2 j$ ). The $\mathrm{Cd}^{2+}$ ions are seen to occupy positions displaced slightly from $\mathrm{mO}[\mathrm{O}(6)]$ sites (Figs. $2 e$ and $2 j$ ), as we have seen earlier for fully exchanged $\mathrm{Cd}^{2+} \beta$-alumina [Figs. $2 d$ and $2 h$ in Edström et al. (1991)].

## The rôle of the extra oxygen, $\mathrm{O}(6)$

The rôle of $\mathrm{O}(6)$ is of prime interest in the discussion of a possible $\mathrm{Ag}^{+}-\mathrm{Cd}^{2+}$ ion-exchange mechanism since $\mathrm{O}(6)$ significantly influences the $\mathrm{Ag}^{+}$-ion arrangement in the conduction plane. Inspecting the immediate vicinity of O(6) (Fig. 3a), a BRD2 site is likely to be occupied by the nearest $\mathrm{Ag}^{+}$ion [BRD2-O(6) 2.347 (7) A]. The nearest aBR-O(6) and BRDI-O(6) distances are $\sim 1.74$ and $\sim 1.84 \AA$, respectively, which are both too short to be valid $\mathrm{Ag}^{+}-\mathrm{O}$ distances. The $\mathrm{Ag}{ }^{\prime}-\mathrm{O}$ distance in $\mathrm{Ag}_{2} \mathrm{O}$ is $\sim 2.04 \AA$. The next nearest possible $\mathrm{Ag}^{+}$sites are also at BRD2 sites, $3 \cdot 271$ (7) $\AA$ from $\mathrm{O}(6)$.

On the assumption that $\mathrm{Ag}^{+}$ions are exchanged pairwise, i.e. that one $\mathrm{Cd}^{2+}$ ion exchanges two adjacent $\mathrm{Ag}^{+}$ions, it is reasonable to suppose that the shaded pair in Fig. 3(a) is the first to be exchanged for a $\mathrm{Cd}^{2+}$ which, in turn, takes up a stable site roughly midway between the BRD2 and the aBR site, with a $\mathrm{Cd}^{2+}-\mathrm{O}(6)$ distance of 2.695 (7) $\AA$ (see
the $y=0.10$ result). This distance can be compared with $\sim 2.36 \AA$ in CdO. It would follow then that this selective replacement will continue until all BRD2$\mathrm{aBR} \mathrm{Ag}^{+}$pairs have been removed, at around $y \simeq$ $0 \cdot 22$. As further $\mathrm{Ag}^{+}$ions are replaced the occupations of all three $\mathrm{Ag}^{+}$sites diminish at roughly equal rates. By the time a large percentage of the $\mathrm{Ag}^{+}$ions have been replaced (the $y=0.99$ and 1.11 cases), only BRD1 sites are occupied by $\mathrm{Ag}^{+}$ions (Figs. 2d, $2 e, 2 i$ and $2 j$ ). A reasonable interpretation here is that, between the $y=0.41$ and 0.99 cases, there exists a composition at which all BRD2-aBR pairs have been exchanged, and $\mathrm{Ag}^{+}$ions only remain at BRD1 sites. A simple extrapolation of the occupations given in Table 2 gives the composition at which this occurs to be roughly $y=0.88$, i.e. $72 \%$ of the $\mathrm{Ag}^{+}$ ions have been replaced by $\mathrm{Cd}^{2+}$. The occupation of the BRDI sites then diminishes monotonically to zero as $\mathrm{Cd}^{2+}$ exchange continues. Again, a simplistic picture would maintain the existence and identity of BRD2-aBR $\mathrm{Ag}^{+}$pairs up to their final disappearance. It may be more realistic to imagine, however, that as increasing numbers of $\mathrm{Cd}^{2+}$ ions move into the system, the local repulsion effect of their +2 charges serves to disperse the residual $\mathrm{Ag}^{+}$ pairs into positions of BRD1 type. The observation that all $\mathrm{Ag}^{+}$sites appear to deplete at approximately the same rate after this initial phase (up to $y \sim 0 \cdot 22$ ) would suggest that subsequent $\mathrm{Ag}^{+}$-pair exchange


Fig. 3. Local structurization for Ag ions around $\mathrm{O}(6)$ in (a) Ag . $\beta$-alumina; the pair of Ag + ions first replaced for $\mathrm{Cd}^{2+}$ is shaded in. The situation shown in ( $b$ ) corresponds to $y=0.22$, in which $\mathrm{Cd}^{2+}$ ions have replaced the first $\mathrm{Ag}^{+}$-ion pair, and the remaining arbitrarily defined $\mathrm{Ag}^{+}$pairs are indicated with dashed lines.
occurs more or less randomly. It could well be that the $\mathrm{Cd}^{2+}$ ions which exchange first have a screening effect on $\mathrm{O}(6)$, such that other $\mathrm{Ag}^{+}$pairs close to $\mathrm{O}(6)$ are insignificantly more stable with respect to $\mathrm{Cd}^{2+}$ substitution than $\mathrm{Ag}^{+}$pairs more distant from $\mathrm{O}(6)$, see Fig. 3(b). The correctness of this simplistic interpretation is difficult to confirm, though we shall assume it to be the case hereafter.

## Comparison with the $\mathrm{Na}^{\prime} / \mathrm{Cd}^{2+} \beta$-alumina system

An entirely parallel study has been made of the $\mathrm{Na}^{+} / \mathrm{Cd}^{2+} \beta$-alumina system (Edström et al., 1988, 1991) and it is therefore opportune to make some comparisons. It is immediately clear that the two cases differ qualitatively. This results directly from the ability of $\mathrm{Ag}^{+}$ions, in spite of their larger formal radius ( 1.14 compared to $0.97 \AA$ for $\mathrm{Na}^{+}$), to occupy the smaller aBR sites. This leads to a more extensive structural arrangement of the $\mathrm{Na}^{+}$pairs (Fig. 4) which then retain their identity throughout the $\mathrm{Cd}^{2+}$. exchange process. With the possible exception of an $\mathrm{Ag}^{+}$pair close to $\mathrm{O}(6)$, the identity of $\mathrm{Ag}^{+}$pairs (perhaps even the concept of pairs) is less well defined in the $\mathrm{Ag}^{+} \beta$-alumina structure.

It is also interesting to reflect on the repercussions of this difference on the ionic conductivity for the two mixed-ion systems. In $\mathrm{Na}^{+} / \mathrm{Cd}^{2+} \beta$-alumina, the activation energy, $E_{a}$, goes through a minimum for low $\mathrm{Cd}^{2+}$ exchange, before rising sharply on further $\mathrm{Cd}^{2+}$ substitution (Sutter et al., 1983). The present structural result would suggest a less-complex behaviour for $\mathrm{Ag}^{+} / \mathrm{Cd}^{2+} \beta$-alumina, as a result of the less extended nature of the $\mathrm{Ag}^{+}$ordering around $\mathrm{O}(6)$. No reliable conductivity data are yet available for this system, however.

To summarize, it has been seen that differences in the nature of the local interactions of $\mathrm{Na}^{+}$and $\mathrm{Ag}^{+}$ ions with their chemical environments lead to qualitative differences in ionic arrangement and ionexchange mechanism. Implicit in this result is that ion-transport mechanisms in the $\mathrm{Na}^{+}$and $\mathrm{Ag}^{+}$ $\beta$-alumina systems will also be qualitatively different in the two cases. A general observation is that conventional diffraction techniques have been successful here in exposing evidence for these differences.


Fig. 4. The sphere of greatest influence on the Na ' ions around $\mathrm{O}(6)$ in $\mathrm{Na}{ }^{\prime} \beta$-alumina.

This research has been supported in part by the Swedish Natural Science Research Council (NFR) and in part by the United States Office of Naval Research under Contract no. N00014-81-K-0526. We are also grateful to our laboratory technician Hilding Karlsson for his skilled assistance.

## References

Blessing, R. H., Coppens, P. \& Becker, P. (1974). J. Appl. Cryst. 7, 488-492.
Bollot, J. P., Colomban, P., Collin, G. \& Comès, R. (1980). J. Phys. Chem. Solids, 41, 47-54.
Boilot, J. P., Colomban, P., Collongues, R., Collin, G. \& Comès, R. (1980). J. Phy's. Chem. Solids, 41, 253-258.
Bruce, J. A., Howie, R. A. \& Ingram, M. D. (1986). Solid State Ionics, 18-19, 1129-1133.
Catti. M., Cazzanelli, E., Ivaldi, G. \& Mariotto, G. (1987). Phys. Rev. B, 36, 9451-9460.

Edström, K., Thomas, J. O. \& Farrington, G. C. (1988). Solid State Ionics, 28-30, 363-368.
Edström, K., Thomas, J. O. \& Farrington, G. C. (1991). Acta Cryst. B47, 635-643.
Lehmann, M. S. \& Larsen, F. K. (1974). Acta Cryst. A30, 580-584.
Lundgaren, J.-O. (1982). Crystallographic Computer Programs. Report UUIC-B13-04-05. Institute of Chemistry, Univ. of Uppsala, Sweden.
McCandlish, L. E., Stout, G. H. \& Andrews, L. C. (1975). Acta Cryst. A31, 245-249.
Reidinger, F. (1979). PhD Thesis, State Univ. of New York, Albany, USA.
Roth, W. L. (1972). J. Solid State Chem. 4, 60-75.
Roth, W. L., Reidinger, F. \& LaPlaca, S. (1976). Superionic Conductors, edited by G. D. Mahan \& W. L. Roth, pp. 223-241. New York: Plenum Press.
Sutter, P. H., Cratty, L., Saltzberg, M. \& Farrington, G. C. (1983). Solid State Ionics, 9-10, 295-298.

Tofield, B. C. \& Farrington, G. C. (1979). Nature (London), 278, 438-439.
Yao, Y. F. \& Kummer, J. T. (1967). J. Inorg. Nucl. Chem. 29, 2453-2474.

Acta Cryst. (1991). B47, 650-659

# Charge Densities in $\mathbf{C o S}_{\mathbf{2}}$ and $\mathrm{NiS}_{\mathbf{2}}$ (Pyrite Structure) 

By Ellen Nowack<br>Institut für Kristallographie, RWTH Aachen, Templergraben 55, D-5100 Aachen, Germany<br>Dieter Schwarzenbach<br>Institut de Cristallographie, Université de Lausanne, Bâtiment des Sciences Physiques, Dorigny, CH-1015 Lausanne, Switzerland<br>and Theo Hahn<br>Institut für Kristallographie, RWTH Aachen, Templergraben 55, D-5100 Aachen, Germany<br>(Received 23 November 1990; accepted 22 April 1991)<br>Dedicated to Professor Karl Fischer on the occasion of his 65 th birthday


#### Abstract

The electron-density distributions in the pyrite-type structures of $\mathrm{CoS}_{2}$ and $\mathrm{NiS}_{2}$ have been determined from high-resolution single-crystal diffraction data [ $\mathrm{Ag} \mathrm{K} \alpha$ radiation; resolution and temperature $(\sin \theta / \lambda)_{\text {max }}=1.49 \AA^{-1}$ at 295 K for $\operatorname{CoS}_{2}, 1 \cdot 63 \AA^{-1}$ at 135 K for $\mathrm{NiS}_{2}$ ]. The charge densities were refined using a multipolar deformation model $[R(|F|)=$ 0.0119 and 0.0136 , respectively]. The X-ray diffraction data of $\mathrm{FeS}_{2}$ [Stevens, DeLucia \& Coppens (1980). Inorg. Chem. 19, 813-820; $\mathrm{Ag} \mathrm{K} \alpha$ radiation, $(\sin \theta / \lambda)_{\text {max }}=1.46 \AA^{-1}$, room temperature] were refined using the same deformation model and program in order to facilitate comparison of the results $[R(|F|)=0.0176]$. The main features of the result-


ing deformation maps agree well for all three structures. They consist of important maxima in the immediate vicinity of the metal atoms pointing towards the faces of the coordination octahedron. The heavier the metal atom, the smaller is the distance of the maxima from the atomic centre. These features are interpreted by a preferential occupation of the metal $d$ orbitals which correspond to the cubic $t_{2 g}$ orbitals. An analysis of the $d$-orbital populations indicates that the symmetry of the electron distribution around the metal atom is in all cases very close to cubic, the site symmetry being $\overline{3}$; the $t_{2 g}$ orbitals appear to be fully occupied by six electrons while the occupation of the $e_{g}$ orbitals increases in the series $\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$ and indicates covalent overlap with the S ligands.


[^0]:    * Lists of structure factors, anisotropic thermal parameters and details of molecular geometry and refinements have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54081 ( 193 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square. Chester CH1 2HU, England.

